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The physical concept of synthetic dimensions has recently been introduced into optics. The fundamental

physics and applications are not yet fully understood, and this report explores an approach to optical neural

networks using synthetic dimension in time domain, by theoretically proposing to utilize a single resonator

network, where the arrival times of optical pulses are interconnected to construct a temporal synthetic dimension.

The set of pulses in each roundtrip therefore provides the sites in each layer in the optical neural network, and

can be linearly transformed with splitters and delay lines, including the phase modulators, when pulses circulate

inside the network. Such linear transformation can be arbitrarily controlled by applied modulation phases,

which serve as the building block of the neural network together with a nonlinear component for pulses. We

validate the functionality of the proposed optical neural network for the deep learning purpose with examples

handwritten digit recognition and optical pulse train distribution classification problems. This proof of principle

computational work explores the new concept of developing a photonics-based machine learning in a single

ring network using synthetic dimensions, which allows flexibility and easiness of reconfiguration with complex

functionality in achieving desired optical tasks.
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Optical neural networks (ONNs) are under exten-

sive studies recently with an ultimate goal of achiev-

ing machining learning in a photonic system. [1–12] Re-

cent advancements have revealed that ONNs exhibit im-

portant computation capability with photonic tools [13–17]

and training optical fields for some specific optimization

purposes. [18] On the other hand, realizations of ONNs on

different platforms also attract great interest from the-

oretical and computational perspectives. For example,

training ONNs through in situ back propagation [19,20] and

quantum ONNs can conduct the non-classical tasks. [21] In

addition, the recurrent neural network, [22–26] as an impor-

tant machine learning model, has been studied with the

optical-based technologies. [27] Nevertheless, it has been

found that most of the ONN designs depend on the number

of photonic devices in each layer as well as the total layer

number, which makes an ONN system require 𝑁2 photonic

devices with tunable externally controlled components and

makes its practical implementation rather complex and

lacks the freedom and options for further reconfiguration

and miniaturization. [13–15] It is therefore important to in-

vestigate alternative photonic ONN design architectures,

which can potentially offer enough freedom towards arbi-

trary functionality. Thus, it is essential to explore novel

physical principles, and the approach based on synthetic

dimensions offers an intriguing opportunity to overcome

some of the existing challenges and limitations.

Synthetic dimension is a rapidly arising concept in pho-

tonics which facilitates utilization of different degrees of

freedom of light to simplify experimental arrangements

and to get the most out of those. [28–32] Recently, it has

been suggested that an ONN with synthetic dimensions

can potentially provide simpler design of the ONN to

achieve a complicated functionality. [33–35] However, the

proper implementation of those appeared to be challeng-

ing. In this Letter, we investigate the time-multiplexed ar-

chitecture using temporal information [36–41] that has been

demonstrated as a highly promising way for optical com-

putations such as coherent Ising machines, [39] photonic

reservoir computing, [42] and ONNs with synthetic nonlin-

ear lattices. [43]

In this work, we introduce and validate through com-

putational experiments a new paradigm to achieve the op-

tical neural network in a single resonator network, with the
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temporal synthetic dimension constructed by connecting

different temporal positions of pulses with pairs of delay

lines. Different from pioneering works in Refs. [33,43] that

proposed ONNs with synthetic lattices in coupled rings,

the proposed approach in this study offers an alternative

solution to the ONN problem in a single ring. The optical

resonator network with reconfigurable couplings between

different arrival times (i.e., temporal positions) of opti-

cal pulses supports time-multiplexed lattice [39] and cre-

ates the temporal synthetic dimension. With controllable

splitters and phase modulators used to build desired con-

nections between pulses, we show the way of construct-

ing multiple layers of an ONN in a single resonator [see

Fig. 1(a)]. A nonlinear operation is used to perform com-

plex modulations which are being controlled by external

signals with the aid of a computer. As validations for the

deep-learning functionality, we perform the training of the

proposed platform for the ONN with the training data set

of MNIST handwritten digit database with appropriate

noises considered. [44] The striking feature of our ONN is

that it needs only one resonator but gives arbitrary size of

layers in the network, which makes our system unlimited in

the total layer (roundtrip) number with high reconfigura-

bility. Moreover, this single resonator network is capable

of conducting arbitrary optical tasks, after performing the

proper training. For example, we conduct a pulse train

classification problem, which recognizes different distribu-

tions of pulse trains. Our work hence points out a concept

for realizing the ONN with synthetic dimensions, which is

highly scalable and therefore gives the extra freedom for

further simplification of the setup with possible reconfigu-

ration.

Model. We start by considering a resonator composed

of the main cavity loop of the waveguide [see Fig. 1(a)]. By

neglecting the group velocity dispersion of the waveguide,

we assume that there are 𝑁 optical pulses simultaneously

propagating inside the loop, and every two nearby pulses

is temporally separated by a fixed time Δ𝑡. Each pulse is

labelled by its temporal position 𝑡𝑛 (or arrival time, with

𝑡𝑛+1 − 𝑡𝑛 = Δ𝑡), [39] and we use 𝑛 = 1, . . . , 𝑁 to denote

each pulse at different temporal positions.

To construct the temporal synthetic dimension, we add

a pair of delay lines, which are connected with the main

loop through splitters and couplers. Each splitter is con-

trolled by parameter 𝜑1(2), which determines that a por-

tion of the pulse with the amplitude cos𝜑1(2) remains in

the main loop while the rest of the pulse with the am-

plitude 𝑖 sin𝜑1(2) gets into the delay line. [36,37] Lengths

of delay lines are carefully designed. For the pulse at the

temporal position 𝑛 propagating through the shorter delay

line, it combines into the main loop at a time Δ𝑡 ahead of

its original arrival time 𝑡𝑛 and contributes to the pulse at

the time 𝑡𝑛−1 = 𝑡𝑛−Δ𝑡, i.e., Δ𝑛 = −1. On the other hand,

for the pulse propagating through the longer delay line, it

combines into the main loop at a time Δ𝑡 behind 𝑡𝑛 and

contributes to the pulse at 𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡, i.e., Δ𝑛 = +1.

Such a design constructs the temporal synthetic dimen-

sion [see Fig. 1(b)], where the 𝑛-th pulse during the 𝑚-th

roundtrip with the amplitude 𝐴(𝑛,𝑚) (in units of a ref-

erence amplitude 𝐴0) is connected to its nearest neighbor

sites in the temporal synthetic lattice after each roundtrip.

The boundary of this lattice can be created by further in-

troducing the intracavity intensity modulator to suppress

unwanted pulses in the main loop. [45]

We place phase modulators inside the main loop as

well as two delay lines. Each phase modulator is con-

trolled by external voltage and adds a modulation phase

𝜃𝑖 (𝑖 = 1, 2, 3) for the pulse propagating through it. [39,45]

Moreover, we use the complex modulator as the nonlinear

component, which can convert the input pulse to an out-

put pulse with a complex nonlinear function. In such an

ONN, parameters 𝜑𝑖 and 𝜃𝑖 can be precisely controlled at

any time, meaning that one can manipulate 𝜑𝑖 and 𝜃𝑖 for

each pulse 𝑛 at each roundtrip number 𝑚.
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Fig. 1. (a) The schematic of the single resonator network
with two delay lines in purple and green respectively. CO:
combiner, SP: splitter, PM: phase modulator, NC: non-
linear component. 𝐴 denotes the field amplitude while 𝐵
denotes the output amplitude defined in Eq. (1). (b) The
connectivity of the synthetic photonic lattice along the
temporal dimension (𝑛-axis) implemented in (a) for pulses
evolving after roundtrips (𝑚). A number of 𝑁 pulses in
each roundtrip (shown in circles) are considered and the
pulses evolve for 𝑀 roundtrips in total, which therefore
construct the ONN with 𝑀 layers and 𝑁 neurons sites in
each layer. Green, black, and purple arrows correspond to
different optical branches of delay lines in (a).

In this temporal synthetic lattice, the propagation pro-

cess of pulses in each single roundtrip can compose the

linear transformation, described by [36,37]

𝐵(𝑛,𝑚) =𝐴(𝑛,𝑚) cos𝜑1(𝑛,𝑚) cos𝜑2(𝑛,𝑚)𝑒𝑖𝜃2(𝑛,𝑚)

− 𝑖𝐴(𝑛+ 1,𝑚) sin𝜑2(𝑛+ 1,𝑚)𝑒𝑖𝜃3(𝑛+1,𝑚)

− 𝑖𝐴(𝑛− 1,𝑚) cos𝜑2(𝑛− 1,𝑚)

sin𝜑1(𝑛− 1,𝑚)𝑒𝑖𝜃1(𝑛−1,𝑚), (1)

where 𝐵(𝑛,𝑚) denotes output amplitudes for the set of

pulses after the linear transformation. A very small por-

tion of pulses are dropped out and collected by detectors,
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which are stored in the computer for the further analy-

sis. The pulses then pass the nonlinear component where

we use a formula similar to a saturable absorber [46,47] but

with amplitudes, so a complex nonlinear operation is per-

formed

2𝐵(𝑛,𝑚)(1− 𝑇𝑛,𝑚)/𝐴0 = ln(𝑇𝑛,𝑚), (2)

𝐴(𝑛,𝑚+ 1) = 𝐵(𝑛,𝑚)𝑇𝑛,𝑚. (3)

For a given input pulse 𝐵(𝑛,𝑚), the nonlinear coefficient

𝑇𝑛,𝑚 can be calculated in the computer with Eq. (2), and

then appropriate external signal is applied to the complex

modulator [48] so the output pulse after the nonlinear com-

ponent follows Eq. (3), which turns out to be the input

pulse 𝐴(𝑛,𝑚+ 1) for the next layer (the next roundtrip).

We find that this particular choice of the complex non-

linear function works extremely well, compared to regular

real nonlinear activation functions such as sigmoid func-

tion or hyperbolic tangent function.
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Fig. 2. (a) Schematic of the architecture of an optical
neural network. 𝐴1 is the vector of pulses imported in the
first layer when training starts. 𝐴𝑚: vector of the out-
put pulses after the (𝑚 − 1)-th roundtrip (layer), which
is also the input vector for the 𝑚-th roundtrip (layer);
𝑊𝑚: matrix for the linear transformation during the 𝑚-
th roundtrip (layer); 𝐵𝑚: vector of pulses after the lin-
ear transformation during the 𝑚-th roundtrip (layer); 𝑓𝑚:
nonlinear activation operation; 𝑓 ′

𝑚: derivative of 𝑓𝑚 dur-
ing back propagation. 𝐶 is the cost function for the out-
put signal. (b) Illustration of the signal flow through
roundtrips (layers) in the resonator in Fig. 1(a).

Figure 2 summarizes the forward transmissions with

linear transformations and nonlinear operations on pulses.

Theoretically, the total number of layers, 𝑀 as well as the

total pulse number 𝑁 , can be arbitrary. In Fig. 2, we use

𝑊𝑚 to define the linear transformation in Eq. (1) and 𝑓𝑚
to define the nonlinear operation in Eqs. (2) and (3) for

the 𝑚-th roundtrip. Hence the forward transmission at

each layer 𝑚 follows 𝐵𝑚 = 𝑊𝑚𝐴𝑚 and 𝐴𝑚+1 = 𝑓𝑚𝐵𝑚,

where 𝐴𝑚 and 𝐵𝑚 are vectors of 𝐴(𝑛,𝑚) and 𝐵(𝑛,𝑚), re-

spectively. Pulse information 𝐴(𝑛,𝑚+ 1) (𝐵(𝑛,𝑚)) after

(before) the nonlinear operation at the 𝑛-th temporal po-

sition during the 𝑚-th roundtrip is collected by dropping

a small portion of pulses out of the resonator network into

detectors. Such information of 𝐴𝑚 and 𝐵𝑚 is stored in the

computer for further backward propagation in training the

ONN.

Once the forward propagation is finished after 𝑀

roundtrips in the optical resonator network, the back-

ward propagation can be performed in the computer

following the standard procedure to correct control

parameters, [19,49] which is briefly summarized here. The

backward propagation equations read [19,49]

�̃�𝑚 = 𝐵𝑚 + 𝑓 ′
𝑚(𝐴𝑚+1 −𝐴𝑚+1), (4)

𝐴𝑚 = 𝑊𝑇
𝑚�̃�, (5)

with 𝐴𝑚 and �̃�𝑚 being vectors at the 𝑚-th layer, calcu-

lated through the back propagation from the stored infor-

mation of 𝐴𝑚+1 and 𝐵𝑚. Here 𝑓 ′
𝑚 is the derivative of the

nonlinear operation at the 𝑚-th layer in Eq. (4), 𝑊𝑇
𝑚 is

the inverse of 𝑊𝑚, and 𝐴𝑀+1 is the target vector 𝐴target,

which is the expected output vector of the training set.

The cost function after the 𝑚-th layer can therefore be

calculated by

𝐶𝑚 =
1

2𝑁

𝑁∑︁
𝑖=1

|𝐴(𝑖,𝑚+ 1)−𝐴(𝑖,𝑚+ 1)|2. (6)

Throughout the backward propagation, optical controlling

parameters 𝜑1(𝑛,𝑚), 𝜑2(𝑛,𝑚), 𝜃1(𝑛,𝑚), 𝜃2(𝑛,𝑚), and

𝜃3(𝑛,𝑚) can be trained by calculating the derivative of

𝐶𝑚 with respect to these parameters, i.e.,

𝜕𝐶𝑚

𝜕𝜑1,2(𝑛,𝑚)
= [(𝐴𝑚+1 −𝐴𝑚+1)]

𝑇 ⊙ 𝑓 ′
𝑚

· 𝜕𝑊𝑇

𝜕𝜑1,2(𝑛,𝑚)
·𝐴𝑚, (7)

𝜕𝐶𝑚

𝜕𝜃1,2,3(𝑛,𝑚)
= [(𝐴𝑚+1 −𝐴𝑚+1)]

𝑇 ⊙ 𝑓 ′
𝑚

· 𝜕𝑊𝑇

𝜕𝜃1,2,3(𝑛,𝑚)
·𝐴𝑚, (8)

where ⊙ is the vector multiplication, with 𝑐 = 𝑎⊙𝑏 defined

as 𝑐𝑛 = 𝑎𝑛𝑏𝑛. We can obtain the corrections of parameters

as follows: [49]

Δ𝜑1,2(𝑛,𝑚) = −𝑎
𝜕𝐶𝑚

𝜕𝜑1,2(𝑛,𝑚)
, (9)

Δ𝜃1,2,3(𝑛,𝑚) = −𝑎
𝜕𝐶𝑚

𝜕𝜃1,2,3(𝑛,𝑚)
, (10)

with 𝑎 being the learning rate for this training.

Then 𝜑1,2(𝑛,𝑚) becomes 𝜑1,2(𝑛,𝑚) + Δ𝜑1,2(𝑛,𝑚) and

𝜃1,2,3(𝑛,𝑚) becomes 𝜃1,2,3(𝑛,𝑚) + Δ𝜃1,2,3(𝑛,𝑚). Fol-

lowing the backward propagation procedure summarized

above, the parameters for controlling the forward propa-

gation of each pulse at the 𝑛-th temporal position for the

𝑚-th roundtrip are updated backwardly from the 𝑀 -th

layer to the 1-st layer.

Having the entire procedure in hand, one can train an

ONN with a training set of data to prepare the ONN ready

for doing the designed all-optical computation with optical

pulses in this single resonator network.

Results. To show the validity and reliability of our

proposed ONN, we consider an MNIST handwritten digit

recognition problem as commonly used for ONNs, [44] with

noises included. The MNIST data set is chosen from the

classic data set in the field of machine learning. It consists

of 60000 training samples and 10000 test samples. Each

sample is a 28×28 pixel grayscale handwritten digital pic-

ture, representing a number from 0 to 9. Some typical

visualization legends are given in Fig. 3.
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Fig. 3. Typical visualization legends from the MNIST
dataset.
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Fig. 4. Relative cost functions defined in Eq. (6) versus
the training iteration number during the training process
or (a) training set, and (b) test set, respectively, for the
Hand written recognition problem.

In simulations, we use 49 pulses (𝑁 = 49) and 45

roundtrips (𝑀 = 45), with learning rate 𝑎 = 0.001. For

the simplicity purpose, we pre-process the original MNIST

handwritten digit database, [44] where each input data sup-

poses to have an array of 784 elements, with the maxi-

mum pooling twice, [50] so the input data can be mapped

on 49 input pulses in our ONN architecture. Moreover,

after the final roundtrip in the single resonator network,

we add another full connection layer between collected sig-

nals from 49 pulses and 10 additional output sites, which

shall be assisted by the computer. In this full connection

layer on the computer, 𝑎 = 0.02, and we use the sigmoid

nonlinear function as the activation function. In Fig. 4,

we plot the normalized cost function, defined in Eq. (6),

for training set and test set versus the computation iter-

ation number. Such a cost function based on the mean

square error has been used in the literature for classifica-

tion problems. [51–54] Both cost functions decreases as the

iteration number increases. Therefore, the ONN in the

temporal synthetic dimension works fine for the handwrit-

ten digit recognition problem. We emphasize that the pre-

processing and the additional full connection layer make

this model less competitive with previous ONNs, [5,7,55] and

this simulation is only for the purpose of demonstrating the

validity of our ONN and the stability with certain noises.

To this end, in the test set, we add random noises on

the 49 input pulses with their amplitudes multiplied by

1 + 𝑅 · 𝛿/2, with 𝑅 ∈ (−0.5, 0.5) being a random num-

ber and 𝛿 denoting amplitude of noises, where we choose

𝛿 = 0, 2%, 4%, 6%, 8%, 10%. Here, 60000 sets of train-

ing data and 10000 sets of test data are used for simu-

lations. After training, noises with 𝛿 are appended into

the ONN to carry out the test. We list errors of predic-

tion in Table 1. One can see that the error of prediction

in our ONN architecture is 21.1% if there is no noise in

input pulses from the test set. However, when we add

noises into the system, the error increases up to 29.7% for

𝛿 = 10%. Small noises may be tolerated in this proposed

ONN architecture. However, large noises could affect the

performance of the system, which may need further im-

provement in the future. Although the effects of noises

in our proposed ONN architecture are difficult to be com-

pared with those in other ONN systems due to the very

different design associated to synthetic dimensions, typi-

cal experiments with time-multiplexed architecture can be

carried out with small noises. [39]

Table 1. Errors of prediction for handwritten digit recog-
nition with different noises.

𝛿 in test set (%) 0 2 4 6 8 10

Error of prediction (%) 21.1 24.6 25.8 27.1 28.0 29.7

We have demonstrated the validity of the proposed

ONN. One of the key importance of this proposal is to

provide a possible trained optical network to act a cer-

tain photonic functionality intelligently. As a simple proof-

in-principle verification, we perform a home-made optical

pulse train distribution classification problem.

Our goal is to train an optical neural network to recog-

nize five different profiles of optical pulse trains composed

by 101 pulses, where shapes of five profiles are chosen as

sinusoidal functions as sin(𝑘𝜋𝑡𝑖/𝑇 ) for pulse at temporal

position 𝑡𝑖, with 𝑇 = 100Δ𝑡 and 𝑘 = 1, 2, 3, 4, 5 labeling

five profiles, respectively. For both training and test pro-

cedures, each pulse is interrupted with noises. There are

30000 training sets and 5000 test sets constructed in simu-

lations. Similar noise is used so that the pulse is modified

in amplitude by 1+𝑅1(2)𝛿1(2), where 𝛿1(2) is amplitude of

noises in the training (test) sets and 𝑅1(2) ∈ (−0.5, 0.5) is

a random number. The choice of 𝛿1(2) is listed in Table 2.

Table 2. Errors of prediction for optical pulse train distri-
bution classification problems.

𝛿1(%)
𝛿2 (%)

0 2 4 6

0 1.1 16.6 24.4 29.8

2 43.7 18.7 26.6 30.8

4 68.9 19.9 26.7 30.9

14 75.4 30.7 29.4 32.4

In the simulations, 101 pulses (𝑁 = 101) and 31

roundtrips (𝑀 = 31) are chosen for the ONN, and after

the final roundtrip, another full connection layer between

101 pulses and 5 output sites is used for predictions. For

the training procedure, the learning rate 𝑎 is 0.001 for

𝛿1 = 0, 0.0017 for 𝛿1 = 2%, 0.021 for 𝛿1 = 4%, and 0.011

for 𝛿1 = 6%. The choice of 𝛿1 = 0 results in the invalida-

tion due to lack of data type (all training sets having same

labels are identical), while the noise amplitude 𝛿1 = 6%

induces the complexity caused by high volatility and in-

stability of our data. Therefore, for these two training
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procedures, the test result has relatively high errors of pre-

diction. Nevertheless, one can see from Table 2 that, for

noise amplitudes 𝛿1 = 2% and 4% in the training proce-

dures, the errors of prediction in the test procedures show

relatively good results (error of prediction ≲ 30%), even

for high noise amplitudes 𝛿2 = 14% in the test procedures.

The training process with zero noise of pulses in the

training set is invalidated due to the monotonicity of the

data set. However, in the case of low noise amplitudes

of pulses in the training set, our ONN system shows a

relatively stable prediction for optical pulse train distri-

bution classifications. Furthermore, as another important

feature, one can see that, for a larger noise amplitude 𝛿1
in the training set (for example, comparing 𝛿1 = 2% and

4%), although it gives larger errors for smaller noise am-

plitudes 𝛿2 in the test set, one can obtain a smaller error

(such as 30.7% and 29.4%) for the relatively large noise

𝛿2 = 14%. The example therefore shows the capability of

our proposed ONN architecture in performing direct opti-

cal processing.

Discussion and Summary. The proposed platform

is experimentally feasible with the state-of-the-art pho-

tonic technology. The fiber ring resonator with kilometer-

long roundtrip length can be constructed with hun-

dreds of temporal separated pulses circulating inside the

resonator. [39,45] In particular, in Ref. [45] Leefmans et al.

showed the capability for constructing an ONN consisting

of 64 time-multiplexed optical resonant sites with pulses

produced by an input 1550 nm mode-locked laser, sepa-

rated by 4 ns, which points out an excellent possible ex-

perimental platform for realizing our theoretical proposal.

Moreover, our proposal for achieving the temporal syn-

thetic dimension can also be realized in a resonator with

the free-space optics. [41] In both setups, delay lines (chan-

nels) are used to create the nearest-neighbor couplings

along the temporal synthetic dimension. Moreover, ap-

propriate delay lines (channels) can also connect pulses at

time separations with double, triple, and/or high-order Δ𝑡,

i.e., providing the long-range couplings. Our ONN there-

fore holds the possibility for generating more than three

connectivities between sites in two layers in Fig. 1(b). It

is possible to further increase the accuracy of the ONN.

These delay lines may induce small errors, but as one

sees in Tables 1 and 2, the synthetic ONN can tolerate

small noises. The current nonlinear function in the pro-

posal is performed in the computer. However, it is pos-

sible to consider nonlinear component operated by am-

plitude and phase modulations [48,56,57] or other nonlinear

components, [43,58] which can perform alternative different

complex nonlinear functions in optics. One notices that,

in the proposed approach, the back propagation in the

training process is conducted with a computer and then

obtained optimal parameters are transferred to the physi-

cal system. Such ex situ training may bring extra errors,

but is currently a reasonable strategy utilized in recent ex-

periments for demonstrating ONN functionality. [3,5,7,14] In

Ref. [19], Hughes et al. suggested a possible way to real-

ize in situ backward propagation in optical systems, which

may greatly improve speed in ONNs. The inclusion of such

in situ backward propagation in our proposed ONN could

be of interest for future research.

In summary, we have proposed a novel paradigm to

achieve an ONN in a single resonator network. The pro-

posed approach is based on a physical concept of the tem-

poral synthetic dimension. As the proof of principle, we

study the MNIST handwritten digit recognition problem

to verify the validation of the deep learning functionality of

our proposed ONN. Furthermore, we demonstrate the pos-

sibility of photonic intelligent features, by showing the per-

formance of a home-made optical pulse train distribution

classification problem. Our proposed ONN in the temporal

synthetic dimension uses the trade-off between time and

space complexity, and therefore does not have the advan-

tages in energy and speed. However, the key achievement

here is that we propose an alternative model with relatively

high flexibility, which can be re-configurable and scalable

on the number of sites (pulses) in each layer as well as

the number of layers (roundtrips) for each computation.

Distinguished from other relevant studies, [33,43] our pro-

posal focuses one resonator supporting temporal synthetic

dimension and shows the opportunity for constructing a

flexible ONN that is capable for various optical tasks once

getting trained. The construction in Fig. 1(b) can be eas-

ily linked to architectures of conventional neural networks

with long-range connectivities added via additional delay

lines, which can be further generalized to a recurrent neu-

ral network. [22–26] Furthermore, one can also prepare the

set of pulses with the single-photon state instead, [41] which

mat make our proposal with the temporal synthetic dimen-

sion possible for constructing the quantum neural network

in the future study. Our work therefore shows the opportu-

nity for constructing a flexible ONN in a single resonator,

which points to a broad range of potential applications

from all-optical computation to intelligent optical infor-

mation processing [59] and biomedical imaging. [60,61]
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